La educación en el desarrollo humano de África, una aproximación bayesiana

Agustín ALONSO-RODRIGUEZ

Real Centro Universitario "Escorial-María Cristina" San Lorenzo del Escorial.

Resumen: Naciones Unidas desde 1990 publica cada año su informe sobre desarrollo humano. En el 2010 ha realizado una profunda revisión metodológica para sus estimaciones, fruto de la cual es este informe del 2010. En él aparece el IDH (Índice de Desarrollo Humano) que permite establecer comparaciones entre casi todos los países miembros de Naciones Unidas. Entre las variables explicativas del índice se encuentra la media de los años de escolarización. En este trabajo se intenta estimar el influjo que sobre el IDH tendría el aumento en un año de la media de escolarización en los países de África. Nos acercamos al problema desde una perspectiva bayesiana.

Abstract: United Nations publishes every year, since 1990, his report on human development. A methodological revision of its estimates has been carried out in 2010, and their findings have been presented in the 2010 Report. The new HDI (Human Development Index) allows comparisons among almost all the member states of UN. One of the explanatory variables of the HDI is the mean years of schooling. In this paper we intend to estimate the impact on the HDI of one more year in the mean years of schooling in the African Continent. We approach the problem with a Bayesian point of view.

Palabras clave: Organización de Naciones Unidas, IDH, África, niveles de desarrollo humano, países del grupo 1, países del grupo 2, estimación bayesiana, simulación Monte Carlo, cadenas de Markov Monte Carlo, plataforma de cálculo R, paquetes BRugs, R2WinBUGS, JAGS, R2JAGS, Coda.

Keywords: United Nations Organization, HDI, Africa, levels of human development, group 1 of countries, group 2 of countries, Bayesian estimation, Monte Carlo simulation, Markov Chain Monte Carlo, R computational system, BRugs, R2WinBUGS, JAGS, R2JAGS, Coda.

Sumario:

- I. Introducción.
- II. Objetivo del trabajo.
- III. ¿Por qué Bayes?
- IV. La distribución "a posteriori" bayesiana.
- V. MCMC en BUGS.
- VI. Estimación de parámetros en BUGS.
- VII. Partición de la muestra.
- VIII. Países del grupo 1.
- IX. Países del grupo 2.
- X. Conclusiones.
- XI. Bibliografía.

Recibido: octubre de 2011. Aceptado: Diciembre de 2011.

I. INTRODUCCIÓN

La Organización de Naciones Unidas ha establecido el Índice de Desarrollo Humano (IDH, o HDI, en inglés)) para permitir comparar la situación socio-económica de los países miembros de Naciones Unidas, en lo que respecta al desarrollo humano.

Hay que destacar que en la versión del Informe relativa al 2010 se ha hecho un profundo esfuerzo metodológico para tener en cuenta no sólo factores de índole económico, sino también para tener en cuenta características sociológicas como la esperanza de vida al nacer, los años de escolarización media, los años de escolarización esperada, además del PIB *per cápita*, e incluso se facilita el valor del IDH a partir tan sólo de la esperanza de vida y de la educación.

Este IDH intenta mostrar el desarrollo medio humano alcanzado en una triple dimensión: vida larga y saludable, conocimientos y un nivel de vida decoroso. (Véanse las Notas Técnicas del Informe.)

En función del valor del IDH, Naciones Unidas clasifica a los estados miembros en cuatro niveles:

- Muy alto nivel de desarrollo;
- Alto nivel de desarrollo;
- Nivel medio de desarrollo, y
- Bajo nivel de desarrollo.

En el primer grupo, un total de 42 estados, el IDH varía entre 0.788 (Barbados) y 0.938 (Noruega); en el segundo grupo, 43 estados, el IDH varía entre 0.677 (Tonga) y 0.784 (Bahamas); en el tercer grupo, otros 42 estados, el IDH varía entre 0.488 (Santo Tomé y Príncipe) y 0.669 (Islas Fiji). Por último, en el cuarto grupo, un total de 42 estados, el IDH varía entre 0.140 (Zimbabwe) y 0.470 (Kenya). Al margen de estos datos existen otros 25 estados o territorios con datos incompletos que impiden cuantificar su IDH.

En este trabajo vamos a centrar nuestra atención en el continente africano, haciendo la salvedad de que el recientemente incorporado Sudán del Sur, (2011), no está desglosado de Sudán, y que la situación de intranquilidad, actualmente presente en el norte de África, no está considerada en el Informe.

Son 50 los países africanos para los que Naciones Unidas ha calculado el IDH, y que presenta un rango de variación que va desde 0.140 (Zimbabwe) hasta 0.755 (Libia).

Los 50 países africanos de nuestro estudio, considerados en el informe de las Naciones Unidas, *Table1*, son los siguientes, ordenados en orden alfabético:

	rank	pais	HDI	Elife	Mschool	Eschool	GNPpc	GNPHDI	NincomeHDI
1	146	Angola		48.1	4.4	4.4	-	47	0.353
2	84	Algeria	0.677	72.9	7.2	12.8	8320	6	0.716
3	134	Benin	0.435	62.3	3.5	9.2	1499	8	0.491
4	98	Botswana	0.633	55.5	8.9	12.4	13204	38	0.613
5	161	BurkinaFaso	0.305	53.7	1.3	5.8	1215	12	0.303
6	166	Burundi	0.282	51.4	2.7	9.6	402	0	0.400
7	118	CapeVerde	0.534	71.9	3.5	11.2	3306	4	0.573
8	131	Cameroon	0.460	51.7	5.9	9.8	2197	3	0.493
9	159	CenAfRep	0.315	47.7	3.5	6.3	758	4	0.363
10	163		0.295	49.2	1.5	6.0	1067	9	0.298
11	140	Comoros	0.428	66.2	2.8	10.7	1176	12	0.507
12	126	Congo	0.489	53.9	5.9	9.3	3258	9	0.503
13	168	CongoDR	0.239	48.0	3.8	7.8	291	0	0.390
14	149	CôteIvoire	0.397	58.4	3.3	6.3	1625	10	0.420
15	101	Egypt	0.620	70.5	6.5	11.0	5889	8	0.657
16	157	Ethiopia	0.328	56.1	1.5	8.3	992	2	0.357
17	93	Gabon	0.648	61.3	7.5	12.7	12747	29	0.637
18	151	Gambia	0.390	56.6	2.8	8.6	1358	5	0.426
19	130	Ghana	0.467	57.1	7.1	9.7	1385	14	0.556
20	156	Guinea	0.340	58.9	1.6	8.6	953	0	0.380
21	164	GuineaBissau	0.289		2.3	9.1	538	1	0.362
22	117	EquatGuinea	0.538	51.0	5.4	8.1	22218	78	0.454
23	128	Kenya	0.470	55.6	7.0	9.6	1628	10	0.541
24	141	Lesotho	0.427	45.9	5.8	10.3	2021	8	0.448
25	162	Liberia	0.300	59.1	3.9	11.0	320	5	0.509
26	53	Libya	0.755	74.5	7.3	16.5	17068	5	0.775
27	135	Madagascar	0.435	61.2	5.2	10.2	953	22	0.550
28	153	Malawi	0.385	54.6	4.3	8.9	911	6	0.463
29	160	Mali	0.309	49.2	1.4	8.0	1171	7	0.312
30	114	Morocco	0.567	71.8	4.4	10.5	4628	10	0.594
31	72	Mauritius	0.701	72.1	7.2	13.0	13344	13	0.712
32	136	Mauritania	0.433	57.3	3.7	8.1	2118	5	0.454
33	165	Mozambique	0.284	48.4	1.2	8.2	854	5	0.300
34	105	Namibia	0.606	62.1	7.4	11.8	6323	14	0.629
35	167	Niger	0.261	52.5	1.4	4.3	675	3	0.285
36	142	Nigeria	0.423	48.4	5.0	8.9	2156	12	0.436
37	152	Rwanda	0.385	51.1	3.3	10.6	1190	1	0.432
38	127	SToméyPrín	0.488	66.1	4.2	10.2	1918	8	0.553

39	144	Senegal	0.411	56.2	3.5	7.5	1816	7	0.433
40	158	SierraLeone	0.317	48.2	2.9	7.2	809	4	0.360
41	110	SAfrica	0.597	52.0	8.2	13.4	9812	37	0.581
42	154	Sudan	0.379	58.9	2.9	4.4	2051	22	0.373
43	121	Swaziland	0.498	47.0	7.1	10.3	5132	23	0.482
44	148	Tanzania	0.398	56.9	5.1	5.3	1344	1	0.441
45	139	Togo	0.428	63.3	5.3	9.6	844	22	0.557
46	81	Tunisia	0.683	74.3	6.5	14.5	7979	1	0.729
47	143	Uganda	0.422	54.1	4.7	10.4	1224	5	0.491
48	147	Djibouti	0.402	56.1	3.8	4.7	2471	24	0.394
49	150	Zambia	0.395	47.3	6.5	7.2	1359	5	0.434
50	169	Zimbabwe	0.140	47.0	7.2	9.2	176	0	0.472

En la primera columna aparece el orden de aparición; en la segunda columna el *ranking* del país en la clasificación de Naciones Unidas; en la tercera columna, el nombre del país; en la cuarta columna el correspondiente IDH; en la quinta columna los años de esperanza de vida (*Elife*); en la sexta columna los años de escolarización media (*Mschool*); en la séptima columna la esperanza de años de escolarización (*Eschool*); en la octava columna, el PIB per capita; en la novena columna el GNPHDI, un índice híbrido de desarrollo, función de los conocimientos, años de escolarización y del PIB *per capita*; y, por último, en la columna décima, (*NincomeHDI*), el IDH calculado a partir sólo de la esperanza de vida y de los años de escolarización. Véanse las Notas Técnicas que acompañan al informe.

La revista *Mundo Negro* en su número extraordinario de abril-mayo, 2010, añade a la anterior lista, cuatro países más. A saber: Eritrea, Somalia, República Árabe Saharaui y las Islas Seychelles, países para los que el informe de Naciones Unidas no tiene datos del IDH

Como datos de referencia, el informe de Naciones Unidas, *Table1*, presenta los siguientes:

Países desarrollados:

Paises	HDI	Elife	Mschool	Eschool	GNPpc	GNPHDI	NincomeHDI
OCDE	0.879	80.3	11.4	15.9	37077	NA	0.904
NonOECD	0.844	80.0	10.0	13.9	42370	NA	0.845

Países en desarrollo:

	Paises	HDI	Elife	Mschool	Eschool	GNPpc	GNPHDI	NincomeHDI
1	ArabStates	0.588	69.1	5.7	10.8	7861	NA	0.610
2	EastAsiaandPacific	0.643	72.6	7.2	11.5	6403	NA	0.692
3	EuropeandCentralAsia	0.702	69.5	9.2	13.6	11462	NA	0.740
4	LatAmericaCaribbean	0.704	74.0	7.9	13.7	10642	NA	0.746
5	SouthAsia	0.516	65.1	4.6	10.0	3417	NA	0.551
6	Sub-SaharanAfrica	0.389	52.7	4.5	9.0	2050	NA	0.436

1	<i>l</i> a	lores n	nedios	de l	los	distinto	s niveles	V	global	mundial:

	Paises	HDI	Elife	Mschool	Eschool	GNPpc	GNPHDI	NincomeHDI
1	Very-high-IDH	0.878	80.3	11.3	15.9	37225	NA	0.902
2	High-IDH	0.717	72.6	8.3	13.8	12286	NA	0.749
3	Medium-IDH	0.592	69.3	6.3	11.0	5134	NA	0.634
4	Low-IDH	0.393	56.0	4.1	8.2	1490	NA	0.445
5	Least-IDH	0.386	57.7	3.7	8.0	1393	NA	0.441
6	Global-mundial	0.624	69.3	7.4	12.3	10631	NA	0.663

Acompañando al informe, se encuentran las ya mencionadas Notas Técnicas, que justifican los valores estadísticos que aparecen en el mismo.

II. OBJETIVO DE ESTE TRABAJO

Abordamos el informe de Naciones Unidas desde un punto de vista aplicado, buscando establecer el impacto esperado o promedio sobre el IDH de cada país, de un año más en el número medio de años de escolarización, sirviéndonos del enfoque bayesiano.

III. ¿POR QUÉ BAYES?

Desde que el reverendo Thomas Bayes (1702-1761) publicó póstumamente su teorema, en 1764, la Estadística, con mayúscula, está dividida en dos corrientes o enfoques que podríamos denominar como "frecuentista" y "bayesiana".

Resumiendo al máximo la idea central de ambas corrientes, cabe afirmar que para los primeros, el modelo, dado los valores de los parámetros, determina la probabilidad de los datos, mientras que para los segundos, los datos establecen la probabilidad del modelo.

Desde el punto de vista práctico que aquí nos interesa, se puede afirmar que para los "frecuentistas" los parámetros son magnitudes constantes, aunque desconocidas, que es necesario estimar, mientras que para los "bayesianos", los parámetros son variables aleatorias, caracterizadas por distribuciones de probabilidad, que es necesario encontrar.

Un nombre más técnico para la corriente frecuentista, al menos en inglés, es el de "*Null hypothesis significance testing*, NHST" que tiene como figura relevante a Ronald Fisher (1890-1962), cuya inicial del apellido se ha inmortalizado en la Distribución de probabilidad F, la distribución más utilizada en el enfoque NHST. (Kruschke, 2011, p. 53).

En el siglo XX el enfoque prevalente ha sido el NHST, debido entre otras razones, a las dificultades técnicas para aplicar el análisis bayesiano.

La obtención de la distribución de probabilidad "a posteriori" de los parámetros, el objetivo último del análisis bayesiano, revestía tales dificultades que hacían inviable su aplicación. La aparición de los ordenadores y su popularidad, hace posible el cálculo indirecto de esta distribución de probabilidad, hecho que hace pensar en un resurgimiento del análisis bayesiano.

IV. LA DISTRIBUCIÓN "A POSTERIORI" BAYESIANA

El objetivo en la inferencia bayesiana es la obtención de la distribución de probabilidad "a posteriori" de los parámetros. En la actualidad, una forma de hacerlo es mediante la obtención de un gran número de valores representativos de esta distribución "a posteriori", y a partir de los mismos, calcular los estadísticos de interés. Un algoritmo que permite lo dicho es el algoritmo *Metropolis*, que lleva el nombre de su autor, (Metrópolis et al., 1953).

En esencia, se parte de una distribución objetivo, $p(\theta)$, sobre un espacio continuo multidimensional para los parámetros, a partir de la cual se obtienen valores muestrales o muestras. Se debe calcular $p(\theta)$ para cualquier valor de θ . La única condición que debe satisfacer $p(\theta)$ es la de no ser negativa. Y en la práctica, $p(\theta)$, o mejor $p(\theta \mid y)$, es el producto de la función de verosimilitud y de la distribución de probabilidad "a priori". En símbolos:

$$p(\theta \mid y) \propto p(y \mid \theta) \times p(\theta)$$

Expresión que para Jackman (2009, p. 14) es un "mantra bayesiano", y que en palabras afirma que la función de probabilidad "a posteriori" es proporcional al producto de la función de verosimilitud por la función de probabilidad "a priori".

Los valores muestrales se obtienen mediante "random walks" que se cambian de manera aleatoria aplicando el algoritmo *Metropolis*.

Asegurar las propiedades de la función objetivo mediante la obtención de valores aleatorios, es un caso de simulación Monte Carlo, apelativo atribuido a von Neumann, y a veces, a Metropolis (Gill, 2002, p. 239).

El algoritmo *Metropolis* es un tipo específico de simulación Monte Carlo. Los "*random walks*" generados son tales que cada paso es independiente del paso anterior, antes de alcanzar la posición actual. Un proceso en el que cada paso no guarda memoria del paso anterior se denomina un proceso de Markov de primer orden. Y una sucesión de tales pasos se conoce como una cadena de Markov, *MCMC: Markov Chain Monte Carlo. Metropolis* genera cadenas de Markov.

V. MCMC en BUGS.

BUGS: (**B**ayesian inference Using Gibbs Sampling (Gilks, Thomas y Spiegelhalter, 1994) es una biblioteca de funciones que implementan el algoritmo *Metropolis*. Aquí utilizaremos la versión denominada OpenBUGS (Thomas et al., 2006) operativa en R a través de BRugs (Thomas, 2004). El muestreo Gibbs, propuesto inicialmente por Geman y Geman (1984) es una suavización de algunos de los requisitos del algoritmo *Metropolis*.

OpenBUGS es un sistema para especificar modelos con el enfoque bayesiano y que genera muestras MCMC de la distribución "a posteriori" de interés. OpenBUGS es un programa separado y distinto del sistema R. OpenBUGS tiene su propio lenguaje de programación, si bien muy parecido al lenguaje de programación de R.

Para el sistema operativo Windows existe el programa WinBUGS, también operativo en R, como R2WinBUGS. WinBUGS está completamente consolidado y no tendrá desarrollos posteriores. Los desarrollos futuros se realizarán en OpenBUGS.

Otro desarrollo del muestreo Gibbs, independiente del proyecto BUGS es JAGS (Just Another Gibbs Sampler), obra de Martyn Plummer, originariamente desarrollado para el sistema Unix. Existen varios paquetes en R para ejecutarlo desde esta plataforma, entre ellos R2jags, de Yu-Sung Su. Para más detalles, cf. Alonso-Rodríguez (2008).

VI. ESTIMACIÓN DE PARÁMETROS CON BUGS

La obtención de muestras MCMC de la distribución "a posteriori" de interés se logra de forma sencilla con BUGS. Basta con establecer la función de probabilidad "a priori", la función de verosimilitud y los datos observados. Hecho lo cual, BUGS utiliza sus funciones internas para generar las cadenas de valores aleatorios de la distribución "a posteriori".

En nuestro caso, el modelo de regresión múltiple con el que relacionamos la variable dependiente IDH con las variables explicativas establecidas por el informe de Naciones Unidas, para cada país, tiene la forma:

$$y = \beta_0 + \beta_1 x_2 + \beta_2 x_3 + \beta_3 x_4 + u$$

siendo:

v: IDH, el Índice de Desarrollo Humano;

 x_2 : esperanza de vida, en años;

 x_3 : media de años de escolaridad;

 x_4 : PIB per capita.

y *u*, el término de error del modelo.

Para utilizar BRugs, comenzamos escribiendo el modelo.

```
# especificación de la función de verosimilitud
model {
    for( i in 1 : nData ) {
        y[i] ~ dnorm( mu[i] , tau )
        mu[i] <- b0 + inprod( b[] , x[i,] )
    }
# distribución de probabilidad "a priori" de los parámetros
    tau ~ dgamma(.01,.01)
    b0 ~ dnorm(0,1.0E-12)
    for ( j in 1:nPredictors ) {
        b[j] ~ dnorm(0,1.0E-12)
    }
}
# fin de la especificación del modelo.</pre>
```

Como antes se ha indicado, es labor del investigador establecer la función de verosimilitud apropiada y la función de probabilidad "*a priori*" de los parámetros. Ambas funciones establecen un modelo en BUGS.

En nuestro caso, la función de probabilidad "a priori" para los parámetros es muy "difusa" en el sentido de que se asigna a los parámetros la distribución normal, con una media igual a cero y una varianza enorme. Se trata así de evitar el rechazo que el término "a priori" pudiera suscitar en el lector no bayesiano.

Otro detalle a señalar en el modelo, es la presencia de la función *inprod()*, que permite mantener intacto el modelo aunque se aumente o reduzca el número de variables explicativas.

Aunque el modelo puede ser aplicado a los datos sin transformar, sin embargo, se aconseja la estandarización de los mismos para reducir la autocorrelación en las cadenas de valores de los parámetros (ordenada en el origen y pendientes). Posteriormente se podrá deshacer la estandarización, para volver a los valores originales.

VII. PARTICIÓN DE LA MUESTRA DE DATOS

Los 50 pises africanos antes presentados muestran un IDH que varía entre 0.140 y 0.755. Siguiendo con la filosofía del informe de Naciones Unidas de homogeneizar valores, y tomado el IDH como referencia, dividimos en dos grupos este bloque de los 50 países.

Grupo 1. Países con IDH entre 0.140 y 0.488. Grupo 2. Países con IDH entre 0.489 y 0.755.

Los países del primer grupo, un total de 36, ordenados por el IDH creciente son los siguientes:

grupo1	L							
rar	nk pai	is HDI	Elife	Mschool	Eschool	GNPpc	GNPHDI	NincomeHDI
169	Zimbabwe	0.140	47.0	7.2	9.2	176	0	0.472
168	CongoDR	0.239	48.0	3.8	7.8	291	0	0.390
167	Niger	0.261	52.5	1.4	4.3	675	3	0.285
166	Burundi	0.282	51.4	2.7	9.6	402	0	0.400
165	Mozambique	0.284	48.4	1.2	8.2	854	5	0.300
164	GuineaBissau	0.289	48.6	2.3	9.1	538	1	0.362
163	Chad	0.295	49.2	1.5	6.0	1067	9	0.298
162	Liberia	0.300	59.1	3.9	11.0	320	5	0.509
161	BurkinaFaso	0.305	53.7	1.3	5.8	1215	12	0.303
160	Mali	0.309	49.2	1.4	8.0	1171	7	0.312
159	CenAfRep	0.315	47.7	3.5	6.3	758	4	0.363
158	SierraLeone	0.317	48.2	2.9	7.2	809	4	0.360
157	Ethiopia	0.328	56.1	1.5	8.3	992	2	0.357
156	Guinea	0.340	58.9	1.6	8.6	953	0	0.380
154	Sudan	0.379	58.9	2.9	4.4	2051	22	0.373
153	Malawi	0.385	54.6	4.3	8.9	911	6	0.463
152	Rwanda	0.385	51.1	3.3	10.6	1190	1	0.432
151	Gambia	0.390	56.6	2.8	8.6	1358	5	0.426
150	Zambia	0.395	47.3	6.5	7.2	1359	5	0.434
149	CôteIvoire	0.397	58.4	3.3	6.3	1625	10	0.420
148	Tanzania	0.398	56.9	5.1	5.3	1344	1	0.441
147	Djibouti	0.402	56.1	3.8	4.7	2471	24	0.394

110	7 7	0 400	40 1	4 4	4 4	1011	47	0 252
146	Angola		48.1	4.4	4.4	4941	47	0.353
144	Senegal	0.411	56.2	3.5	7.5	1816	7	0.433
143	Uganda	0.422	54.1	4.7	10.4	1224	5	0.491
142	Nigeria	0.423	48.4	5.0	8.9	2156	12	0.436
141	Lesotho	0.427	45.9	5.8	10.3	2021	8	0.448
140	Comoros	0.428	66.2	2.8	10.7	1176	12	0.507
139	Togo	0.428	63.3	5.3	9.6	844	22	0.557
136	Mauritania	0.433	57.3	3.7	8.1	2118	5	0.454
134	Benin	0.435	62.3	3.5	9.2	1499	8	0.491
135	Madagascar	0.435	61.2	5.2	10.2	953	22	0.550
131	Cameroon	0.460	51.7	5.9	9.8	2197	3	0.493
130	Ghana	0.467	57.1	7.1	9.7	1385	14	0.556
128	Kenya	0.470	55.6	7.0	9.6	1628	10	0.541
127	SToméyPrín	0.488	66.1	4.2	10.2	1918	8	0.553

Y los países del segundo grupo, un total de 14, son los siguientes:

grupo	52							
rank pais HDI			Elife	Mschool	Eschool	L GNPpc	GNPHDI	NincomeHDI
126	Congo	0.489	53.9	5.9	9.3	3258	9	0.503
121	Swaziland	0.498	47.0	7.1	10.3	5,132	23	0.482
118	CapeVerde	0.534	71.9	3.5	11.2	3306	4	0.573
117	EquatGuinea	0.538	51.0	5.4	8.1	22218	78	0.454
114	Morocco	0.567	71.8	4.4	10.5	4628	10	0.594
110	SAfrica	0.597	52.0	8.2	13.4	9812	37	0.581
105	Namibia	0.606	62.1	7.4	11.8	6323	14	0.629
101	Egypt	0.620	70.5	6.5	11.0	5889	8	0.657
98	Botswana	0.633	55.5	8.9	12.4	13204	38	0.613
93	Gabon	0.648	61.3	7.5	12.7	12747	29	0.637
84	Algeria	0.677	72.9	7.2	12.8	8320	6	0.716
81	Tunisia	0.683	74.3	6.5	14.5	7979	1	0.729
72	Mauritius	0.701	72.1	7.2	13.0	13344	13	0.712
53	Libya	0.755	74.5	7.3	16.5	17068	5	0.775

VIII. PAÍSES DEL GRUPO 1

Tras generar tres cadenas para las distribuciones de los parámetros, de 10000 iteraciones cada una, y tras las oportunas eliminaciones para asegurar la aleatoriedad de los resultados, obtenemos los estadísticos de la tabla 1.

	mu.vect sd	.vect	2.5%	25%	50%	75%	97.5%	Rhat r	n.eff
b[1]	0.518	0.103	0.320	0.449	0.518	0.586	0.729	1.002	1500
b[2]	0.315	0.108	0.097	0.242	0.316	0.388	0.535	1.001	3000
b[3]	0.497	0.103	0.297	0.429	0.495	0.565	0.702	1.002	3000
b0	0.001	0.103	-0.202	-0.064	0.002	0.067	0.202	1.002	1600
tau	2.855	0.718	1.600	2.340	2.809	3.308	4.416	1.002	1600
deviance	65.832	3.451	61.250	63.263	65.134	67.655	74.183	1.003	860

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

Tabla 1.

En la segunda columna (mu.vector) aparecen las medias de la distribución de probabilidad "a posteriori" de cada uno de los coeficientes del modelo, primera columna, que como antes se ha indicado, son considerados variables aleatorias

Con ayuda del paquete *coda*, la representación gráfica de estas distribuciones de probabilidad "*a posteriori*" vienen recogidas en la figura 1.

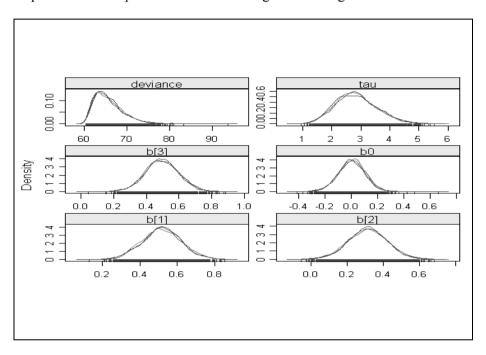


Figura 1.

En esta figura se puede percibir, aunque sin los colores que aparecen en la pantalla, la gran interrelación de las tres cadenas de muestras, señal de haber alcanzado la convergencia con las distribuciones teóricas establecidas "a priori", aspecto también adelantado por el valor del Rhat $\cong 1$, de la tabla 1.

Tras deshacer la estandarización y aumentando en 1 año la escolarización media, la predicción del IDH, el IDH esperado o medio, junto con los límites del 95% de confianza para el mismo, aparece en la tabla 2, junto con los valores de x2, x3 aumentada en uno, y x4:

	x2	x3+1		IDH espera		limSup
[1,]	47.0	8.2	176	0.3267189	0.2203292	0.4390236
[2,]	48.0	4.8	291	0.2920681	0.1937418	0.3960802
[3,]	52.5	2.4	675	0.3067000	0.2152914	0.4049789
[4,]	51.4	3.7	402	0.3040571	0.2062055	0.3993329
[5 ,]	48.4	2.2	854	0.2837973	0.1826760	0.3702704
[6,]	48.6	3.3	538	0.2862372	0.1825980	0.3796415
[7,]	49.2		1067	0.3027674	0.2107887	0.4001718
[8,]	59.1	4.9	320	0.3738519	0.2747755	0.4699718
[9,]	53.7	2.3	1215	0.3372087	0.2433664	0.4289664
[10,]	49.2	2.4	1171	0.3037239	0.2164366	0.4099131
[11,]	47.7	4.5	758	0.3075814	0.2121298	0.3992597
[12,]	48.2	3.9	809	0.3034315	0.2090211	0.3990453
[13,]	56.1	2.5	992	0.3479610	0.2613779	0.4455104
[14,]	58.9	2.6	953	0.3661540	0.2781596	0.4688868
[15,]	58.9	3.9	2051	0.4344147	0.3443566	0.5297295
[16,]	54.6	5.3	911	0.3711885	0.2764826	0.4646552
[17,]	51.1	4.3	1190	0.3479611	0.2531695	0.4416563
[18,]	56.6	3.8	1358	0.3863676	0.2904057	0.4787517
[19,]	47.3	7.5	1359	0.3704603	0.2713166	0.4732049
[20,]	58.4	4.3	1625	0.4174803	0.3172078	0.5083299
[21,]	56.9	6.1	1344	0.4213958	0.3235995	0.5213563
[22,]	56.1	4.8	2471	0.4479620	0.3484135	0.5462828
[23,]	48.1	5.4	4941	0.5091313	0.3841839	0.6219197
[24,]	56.2	4.5	1816	0.4156644	0.3221772	0.5102586
[25,]	54.1	5.7	1224	0.3891032	0.2943290	0.4843246
[26,]	48.4	6.0	2156	0.3959448	0.2884854	0.4851984
[27,]	45.9	6.8	2021	0.3823211	0.2842180	0.4898630
[28,]	66.2	3.8	1176	0.4457348	0.3491246	0.5522187
[29,]	63.3	6.3	844	0.4453285	0.3391569	0.5425265
[30,]	57.3	4.7	2118	0.4388117	0.3487930	0.5327577
[31,]	62.3	4.5	1499	0.4420663	0.3466655	0.5422411
[32,]	61.2	6.2	953	0.4332786	0.3380371	0.5345272
[33,]	51.7	6.9	2197	0.4327347	0.3310883	0.5274227
[34,]	57.1	8.1	1385	0.4504904	0.3450684	0.5527079
[35,]	55.6	8.0	1628	0.4510812	0.3548389	0.5562518
[36,]	66.1	5.2	1918	0.4974424	0.4050342	0.6051078

Tabla 2.

Si comparamos el IDH real con el IDH esperado, y añadimos el incremento porcentual (incrPorctual) ocurrido por aumentar en 1 año la escolarización media, tenemos la tabla 3.

	grupol.pais	realHD	I HDIesperado	incrPorctual
1	Zimbabwe		0.3267189	233.37065
2	CongoDR	0.239	0.2920681	122.20422
3	Niger	0.261	0.3067000	117.50958
4	Burundi	0.282	0.3040571	107.82166
5	Mozambique	0.284	0.2837973	99.92863
6	GuineaBissau		0.2862372	99.04402
7	Chad	0.295	0.3027674	102.63301
8	Liberia	0.300	0.3738519	124.61730
9	BurkinaFaso	0.305	0.3372087	110.56024
10	Mali		0.3037239	98.29254
11	CenAfRep	0.315	0.3075814	97.64490
12	SierraLeone	0.317	0.3034315	95.71971
13	Ethiopia	0.328	0.3479610	106.08566
14	Guinea	0.340	0.3661540	107.69237
15	Sudan	0.379	0.4344147	114.62128
16	Malawi	0.385	0.3711885	96.41261
17	Rwanda	0.385	0.3479611	90.37951
18	Gambia	0.390	0.3863676	99.06861
19	Zambia	0.395	0.3704603	93.78742
20	CôteIvoire	0.397	0.4174803	105.15876
21	Tanzania	0.398	0.4213958	105.87834
22	Djibouti	0.402	0.4479620	111.43334
23	Angola	0.403	0.5091313	126.33531
24	Senegal	0.411	0.4156644	101.13488
25	Uganda	0.422	0.3891032	92.20454
26	Nigeria	0.423	0.3959448	93.60398
27	Lesotho	0.427	0.3823211	89.53656
28	Comoros		0.4457348	104.14364
29	Togo		0.4453285	104.04872
30	Mauritania	0.433	0.4388117	101.34219
31	Benin		0.4420663	101.62444
32	Madagascar		0.4332786	99.60427
33	Cameroon		0.4327347	94.07277
34	Ghana		0.4504904	96.46476
35	Kenya	0.470	0.4510812	95.97472
36	SToméyPrín	0.488	0.4974424	101.93492

Tabla 3.

Un resumen global del incremento porcentual ocurrido viene en la siguiente tabla, la tabla 4:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 89.54 96.45 101.50 106.70 107.70 233.40
```

Tabla 4.

El mínimo corresponde a Lesotho, el máximo a Zimbabwe.

IX. PAÍSES DEL GRUPO 2

Tras generar tres cadenas para las distribuciones de los parámetros, de 10000 iteraciones, y tras las oportunas eliminaciones para asegurar la aleatoriedad de los resultados, obtenemos los estadísticos de la tabla 5.

	mu.vect	sd.vect	2.5%	25%	50%	75%	97.5%	Rhat	n.eff
b[1]	0.863	0.047	0.771	0.834	0.863	0.893	0.953	1.001	3000
b[2]	0.606	0.049	0.508	0.576	0.606	0.637	0.701	1.001	3000
b[3]	0.340	0.048	0.247	0.310	0.340	0.370	0.437	1.002	1600
b0	0.000	0.043	-0.088	-0.027	0.001	0.027	0.084	1.001	3000
tau	47.785	21.308	15.045	32.197	44.646	60.385	98.305	1.002	1800
deviance	-13.786	4.079	-19.291	-16.819	-14.603	-11.640	-3.647	1.001	3000

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

Tabla 5.

La representación gráfica de las distribuciones "a posteriori" de los parámetros viene recogida en la figura 2.

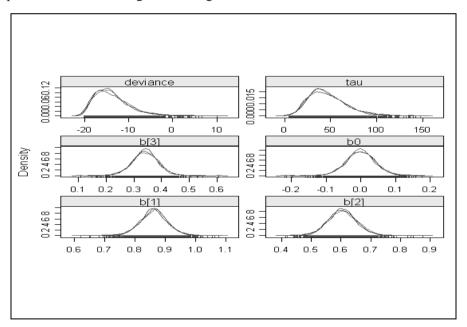


Figura 2.

De nuevo, en esta figura se puede percibir claramente, aunque sin los colores que aparecen en la pantalla, la gran interrelación de las tres cadenas de muestras, señal de haber alcanzado la convergencia con las distribuciones

teóricas establecidas "a priori", aspecto también adelantado por el valor del Rhat $\cong 1$, de la tabla 5.

Tras deshacer la estandarización y aumentando en 1 año la escolarización media, la predicción del IDH, el IDH esperado o medio, junto con los límites del 95% de confianza para el mismo, aparece en la tabla 6.

	X	2 x3	+1 x4	IDH esperado	limInf limSup
[1,]	53.9	6.9	3258	0.5225485 0.49	938510 0.5512281
[2,]	47.0	8.1	5132	0.5250422 0.49	955949 0.5554544
[3,]	71.9	4.5	3306	0.5653865 0.53	364790 0.5945102
[4,]	51.0	6.4	22218	0.5779259 0.54	461105 0.6116339
[5 ,]	71.8	5.4	4628	0.6011734 0.5	736001 0.6292445
[6 ,]	52.0	9.2	9812	0.6177978 0.58	882255 0.6483318
[7,]	62.1	8.4	6323	0.6430645 0.63	141815 0.6715511
[8,]	70.5	7.5	5889	0.6678760 0.63	398898 0.6955425
[9,]	55.5	9.9	13204	0.6814169 0.65	510810 0.7140157
[10,]	61.3	8.5	12747	0.6718822 0.6	440318 0.6999909
[11,]	72.9	8.2	8320	0.7193116 0.69	903710 0.7489201
[12,]	74.3	7.5	7979	0.7038698 0.6	753141 0.7322390
[13,]	72.1	8.2	13344	0.7380773 0.70	085188 0.7664383
[14,]	74.5	8.3	17068	0.7757786 0.74	460222 0.8063895

Tabla 6.

Si comparamos el IDH real con el IDH esperado, y añadimos el incremento porcentual ocurrido (incremPorctual) por aumentar en 1 año la escolarización media, tenemos la tabla 7.

	grupo2.pais re	ealHDI	HDIesperado	incremPorctual
1	Congo	0.489	0.5225485	106.8606
2	Swaziland	0.498	0.5250422	105.4302
3	CapeVerde	0.534	0.5653865	105.8776
4	EquatGuinea	0.538	0.5779259	107.4212
5	Morocco	0.567	0.6011734	106.0271
6	SAfrica	0.597	0.6177978	103.4837
7	Namibia	0.606	0.6430645	106.1163
8	Egypt	0.620	0.6678760	107.7219
9	Botswana	0.633	0.6814169	107.6488
10	Gabon	0.648	0.6718822	103.6855
11	Algeria	0.677	0.7193116	106.2499
12	Tunisia	0.683	0.7038698	103.0556
13	Mauritius	0.701	0.7380773	105.2892
14	Libya	0.755	0.7757786	102.7521

Tabla 7.

Un resumen global del incremento porcentual ocurrido viene en la siguiente tabla, la tabla 8:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 102.8 104.1 106.0 105.5 106.7 107.7
```

Tabla 8.

El mínimo corresponde a Libia, el máximo a Egipto.

X. CONCLUSIONES

No es posible dar un resumen pormenorizado de los resultados ante un abanico tan amplio de países en consideración. La lectura pausada de las tablas 3 y 7 constituye el mejor resumen.

Frente a la idea inicial de suponer que el incremento en un año de la escolarización media produciría un incremento positivo del IDH de todos los países, resulta sorprendente comprobar que para 16 países del primer grupo, el 44% del mismo, no hay un efecto positivo en su IDH.

Así mismo, la variabilidad del posible efecto del incremento de un año en el IDH de los países del primer grupo es notable. De la tabla 4 resulta que para Lesotho no hay efecto positivo, mientras que para Zimbabwe el efecto positivo representa un incremento del 133%.

En el segundo grupo de países el efecto del incremento en un año de la escolarización media en el IDH es positivo en todos los países, y más homogéneo. Mientras para Libia el incremento es del 2.8%, para Egipto es del 7.7%.

De cuanto precede, cabe afirmar que el continente africano presenta un IDH muy desigual, y no parece que sea homogénea la manera de mejorarlo.

XI. BIBLIOGRAFÍA

- ALBERT, J., Bayesian Computation with R, Springer, New York 2007.
- ALONSO-RODRÍGUEZ, A., "El resurgir de Thomas Bayes", en *Anuario Jurídico y Económico Escurialense* (San Lorenzo del Escorial), 41(2008) 327-360.

- BRUGS, véase Thomas, A.
- BUGS Proyect, Bayesian inference Using Gibbs Sampling, URL: http://www.mrc.-bsu.cam.ac.uk/bugs/ MRC Biostatistics Unit, Cambridge, UK.
- CODA: Output Analysis and Diagnostics for MCMC, URL:http://cran.r-project.org/web/packages/coda/, Viena. Véase Plummer et al.
- GEMAN, S., y GEMAN, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6 (1984) 721-741.
- GILKS, W. R.; THOMAS, A., y SPIEGELHALTER, D. J., "A language and program for complex Bayesian modeling", en *The Statistician*, 43 (1994.1) 169-177.
- GILL, J., *Bayesian Methods, A Social and Behavioral Sciences Approach*, Chapman&Hall/CRC, Boca Raton, USA, 2002.
- JACKMAN, S., *Bayesian Analysis for the Social Sciences*, John Wiley and Sons, Chichester, UK, 2009.
- JAGS, véase Plummer, M.
- LANCASTER, T., An Introduction to Modern Bayesian Econometrics, Blackwell-Wiley, Oxford, UK, 2004.
- KRUSCHKE, J. K., *Doing Bayesian Data Analysis, A Tutorial with R and BUGS*, Elsevier/ Academic Press, Oxford, UK, 2011.
- METROPOLIS, N.; ROSEMBLUTH, A. W.; ROSEMBLUTH, M. N.; TELLER, A. M., y TELLER, E., "Equations of state calculations by fast computing machines", en *Journal of Chemical Physics*, 21 (1953) 1087-1091.
- MUNDO NEGRO, África Especial 2010, *Revista Misional Africana* (Madrid) 550-551(2010) 53-109.
- NTZOUFRAS, I., *Bayesian Modeling using WinBUGS*, John Wiley & Sons, Hoboken, New Jersey, USA, 2009.
- OpenBUGS, véase Thomas, A., et al.
- Organización de Naciones Unidas, http://hdr.undp.org/table1,
- PLUMMER, M., JAGS: Jet Another Gibbs Sampler, version 2.2.0, 2010, URL: http:// calvin.iarc.fr/~martyn/software/jags/

- PLUMMER, M.; BEST, N.; COWLES, K., y VINES, K., 2004, coda: Output Analysis and Diagnostics for MCMC, R package version 0.13-3, 2008, en CRAN: The Comprehensive R Archive Network, URL:http://cran.rproject.org/web/packages/coda/, Viena.
- R Development Core Team, R: A Language and Environment for Statistical Computing, Viena, Austria, URL: http://www.r-project.org.
- R2jags, véase Su et al.
- R2WinBUGS, URL: http://cran.r-proyect.org/web/packages/R2WinBUGS/
- SPIEGELHALTER, D. J.; THOMAS, A., BEST, N. G., y LUNN, D., WinBUGS Version 1.4 Users Manual, MRC Biostatistics Unit, Cambridge, UK, 2003.
- SU, Y-S. y YAJIMA, M., R2JAGS, version 0.01-13, 2008, en CRAN: The Comprehensive R Archive Network, URL:http://cran.r-project.org/web/packages/R2JAGS/, Viena.
- THOMAS, A., BRugs user manual (the R interface to BUGS), http://mathstat. helsinki.fi/openbugs/data/Docu/BRugs%20Manual.html.
- THOMAS, A.; O'HARA, B.; LIGGES, U., y STURZ, S., "Making BUGS open", en *R News*, 6 (2006,1) 12-17.