Applied econometrics and environmental ethics

Authors

  • Javier Manuel Capilla Romerosa Universidad Complutense de Madrid

DOI:

https://doi.org/10.54571/ajee.675

Keywords:

Environmental ethics, Energy consumption, RETINA, Green AI, Eco-RETINA

Abstract

The present work explores the relationship between environmental ethics and applied econometrics, focusing on the energy consumption of econometric models training. As an example of good practices, the RETINA algorithm has been programmed in Python following a Green AI approach. Bottlenecks present in the original algorithm have been eliminated, and the ability to measure CO2 emissions during the algorithm's training has been added. Additionally, new functionalities that were not present in the original procedure have been incorporated. This new version has been named Eco-RETINA.

Downloads

Download data is not yet available.

References

Barbierato, E., & Gatti, A. (2024). Towards Green AI. A methodological survey of the scientific literature. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2024.3360705

Brennan, A., & Lo, Y. (2016). Environmental Ethics Stanford Encyclopedia of Philosophy ed EN Zalta.

Castle, J. L., & Hendry, D. F. (2022). Econometrics for modelling climate change. En Oxford Research Encyclopedia of Economics and Finance. DOI: https://doi.org/10.1093/acrefore/9780190625979.013.675

Cochrane, A. (2006). Environmental ethics. Internet encyclopedia of philosophy.

Capilla Romerosa J. M. (2024). Página de GitHub. https://github.com/jcapilla780/Eco-RETINA

GeeksforGeeks. (2023). Environmental Ethics: Types, Importance, Examples. https://www.geeksforgeeks.org/environmental-ethics/

hrokr. (2023). The largest diamond dataset currently on Kaggle. https://www.kaggle.com/datasets/hrokrin/thelargest-diamond-dataset-currely-on-kaggle

Keeble, B. R. (1988). The Brundtland report:‘Our common future’. Medicine and war, 4(1), 17-25. DOI: https://doi.org/10.1080/07488008808408783

Marinucci, M. (2005). RETINA Winpack for real data: A quick guide for automatic model selection. Report, Universidad Complutense de Madrid.

Perez-Amaral, T., Gallo, G. M.,&White, H. (2003).A flexible tool for model building: the relevant transformation of the inputs network approach (RETINA). Oxford Bulletin of Economics and Statistics, 65, 821-838. DOI: https://doi.org/10.1046/j.0305-9049.2003.00096.x

Ranjan, C. (2020). Understanding deep learning: Application in rare event prediction. Imbalanced Learning; Connaissance Publishing: Atlanta, GA, USA, 19-27.

Schmidt,V., Goyal, K., Joshi, A., Feld, B., Conell, L., Laskaris,N., Blank, D.,Wilson, J., Friedler, S.,&Luccioni,

S. (2021). CodeCarbon: Estimate and Track Carbon Emissions from Machine Learning Computing. https://github.com/mlco2/codecarbon. https://doi.org/10.5281/zenodo.4658424

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green ai. Communications of the ACM, 63(12), 54-63. DOI: https://doi.org/10.1145/3381831

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of economic perspectives, 28(2), 3-28. DOI: https://doi.org/10.1257/jep.28.2.3

Published

2025-02-17

How to Cite

Capilla Romerosa, J. M. (2025). Applied econometrics and environmental ethics. Anuario Jurídico Y Económico Escurialense, (58). https://doi.org/10.54571/ajee.675

Issue

Section

ECONOMÍA